Indus Engineering Heat Exchanger Design Case Study Tumble Dryer

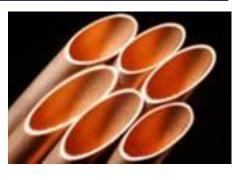
Customer Requirement

□ An existing customer wanted to develop a heat pump dryer with next generation of low GWP refrigerant gas to meet requirement of reduction of environmental impact of HFC

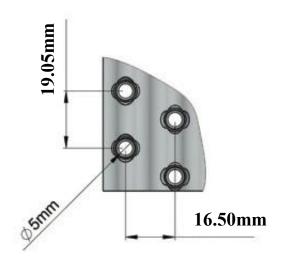
Task

□ Indus International had to design the heat pump dryer coils (Evap & Cond) with new natural low GWP refrigerant R290 to replace existing refrigerant R134a

□ Task is to keep refrigerant charge within safety limit and meeting requirement of drying capacity


Solution

- □ We simulated existing coil performance and its water removing capacity. Based on existing refrigerant coil simulation output, we started design of new coils suitable for usage of R290 refrigerant.
- □ We simulated coils with different tube diameters to minimize internal volume of coil, so that refrigerant charge of R290 can be managed within safety limit and keeping desired performance of dryer



Solution

- □ Also, we have simulated coils with different fin surface to achieve optimum moisture removing capacity
- □ Based on various iterations, we choose our new mini-channel tube of 5mm OD and compact fin geometry pattern 19.05 x 16.5mm and sine wave type fin, which gave desired drying capacity and meeting refrigerant charge limit.

5MM DIA TUBES

Benefits

- □ The designed coil gave 15% more performance and drying capacity compared to existing coil
- □ Use of mini channel Cu tubes gave 20% reduction in total Cu weight
- □ R290 Refrigerant charge meet safety limit

